当电源的内电阻可以忽略不计时,可以认为电源的电动势在量值上近似地等于电源两较间的电位差或电压。为了取得较高的直流电压,常将直流电源串联使用,多量程直流电源,这时总电动势为各电源的电动势之和,总内阻也为各电源内电阻之和。由于内阻增大,一般只能用于所需电流强度较小的电路。为了取得较大的电流强度,可以将等电动势的直流电源并联使用,直流电源型号,这时总电动势即为单个电源的电动势,总内阻为各电源内电阻的并联值。
直流电源的基本原理
单靠水位高低之差不能维持稳恒的水流,可调直流稳压恒流电源,而借助于水泵持续地把水由低处送往高处就能维持一定的水位差而形成稳恒的水流。与此类似,单靠电荷所产生的静电场不能维持稳恒的电流,电源,而借助于直流电源,就可以利用非静电作用(简称为“非静电力”)使正电荷由电位较低的负极处经电源内部返回到电位较高的正极处,以维持两个电极之间的电位差,从而形成稳恒的电流。
直流电源的发展
1994年,原电子工业部颁布了电子行业标准SJ/T10541-94《抗干扰型交流稳压电源通用技术条件》和SJ/T10542-94《抗干扰型交流稳压电源测试方法》,该标准由中国电源学会交流稳定电源专业**及国内相关的电源生产厂、所及检测机构等负责编制,对普通型和抗干扰型交流稳压电源的技术要求、环境要求及相应的试验方法、质量检验规则等都做了详细的规定。该标准发布实施以来,在交流稳压技术领域得到了广泛的应用。